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The mechanical compliance and modulus retardation/relaxation functions are examined 
in terms of a general behaviour which contains more than one process. An analytical 
approach to the transformation in the anelastic response between the compliance and 
the modulus is derived and applied to a cooperative model of relaxation behaviour. In 
particular it is shown that mechanical viscoelasticity is equivalent to the anomalous 
low frequency dispersion process that has been observed in dielectrics containing quasi- 
free charges. Comparison with published experimental data over a wide range of solid 
materials shows the validity of the cooperative model to mechanical relaxation. 

1. Introduction 
The conventional approach to the viscoelastic 
response in materials is to consider a distribution 
of Debye-like relaxing elements each with its 
own relaxation time [1, 2]. Investigation of the 
experimental data then gives the distribution of 
these elements either as a retardation spectrum, 
from compliance measurements, or a relaxation 
spectrum, from modulus measurements. In prin- 
ciple neither of these spectra contains more 
information than the original data as they are 
simply mathematical transforms of the original, 
invariably non-Debye, measurements. Further- 
more it has been found that the relaxation and 
retardation spectra for the same material are 
different [1] and that neither appears to relate 
directly to other physical properties of the system 
such as the distribution of molecular weights in 
polymers [2]. 

A number of  empirical relaxation functions 
have been proposed [2-6]  and have been applied 
to specific samples of materials. The feature of 
these response functions that has not been gener- 
ally appreciated is the appearance of fractional 
power law relationships between the mechanical 
response and the frequency [7]. Recently a 
cooperative theory of relaxation in dielectrically 
active materials has been proposed [8-10]  by 
the present authors and in this theory such frac- 

tional power law behaviour is a direct result of 
two independent types of cooperative behaviour 
in the material under study. It is our intention 
here to examine the general relaxation response 
functions, to apply the results of  the cooperative 
theory to these functions, and to compare the 
predicted behaviour with that given by experi- 
mental data measured in a range of materials 
using a number of  different mechanical relaxation 
techniques. 

In order to carry out the comparison with 
experimental data it was found necessary to 
re-develop the macroscopic approach to retarda- 
tion and relaxation, in particular to consider 
that more than one relaxation process can occur 
in the material. This development is contained 
in Section 2. In Section 3 this approach is applied 
to the cooperative model by making use of the 
direct analogy between dielectric relaxation and 
compliance retardation [ 1, 11 ]. Exact cooperative 
response functions are obtained for stress retarda- 
tion and the analytic transformation of Section 2 
is used to determine the strain relaxation response. 
In the following section the applicability of 
the cooperative model as a description of real, 
experimental, relaxation is investigated and it is 
shown that excellent agreement can be obtained 
in the anelastic region. One particular feature of 
the approach followed here is the recognition of 
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the exact equivalence between the viscoelastic 
behaviour of polymeric materials at temperatures 
in excess of the glass transition temperature and 
the anomalous low frequency behaviour that has 
been observed dielectrically in materials that 
contain quasi-free charges [12], usually ions, such 
as the fast-ion conductors. These processes are 
quite distinct from perfect viscosity, which is 
itself equivalent to a d.c. electrical conductivity, 
although they are commonly poorly distinguished. 

2. Retardation and relaxation 
2.1. Cons t i tu t i ve  equat ions  
We consider a homogeneous and isotropic material 
and apply a step increase in shear stress of  magni- 
tude &o at time zero. The response from a single 
relaxation process to this step at a later time t can 
be expressed in terms of the resultant strain as 

&c~(t) = 2xo.r (1) 

where the creep retardation function for the 
process, r is defined by 

r  = O ( t ) - , ( 0 )  (2) 

to be zero at time zero. When the stress is not a 
simple step function o f  time but continuously 
varying the contribution to the stress from the 
time interval &t is 

Ao - dal't) (3) 
dt 

from which, by summing over all contributions 
in time and allowing for a finite stress, or(--oo), 
at t = -- ~, 

d 
e( t)  = X ~ {o(t~)} A t k ~ ( t  -- tk )  

k 

+ a(--~176162176176 (4a) 

For the particular process under consideration the 
summation can be replaced, in the limit of  small 
Atk, by an integral to give 

f' 
a( t )  = d ( t l ) . r  I + e(--~)~b(oo) 

- o a  

(4b) 

where .the dot notation is used throughout to 
indicate differentiation of a function f ( x )  with 
respect to the variable x. 

In real systems there is usually more than one 
process of relaxation and these can be distin- 
guished by the time scale on which they occur. 
For processes slower than the particular one that 

is under consideration no relaxation takes place 
during the observation process, but systems 
responding on a shorter time scale will be com- 
pletely relaxed throughout the observation period. 
We can represent the summation of the relaxed 
processes by adding their contribution to the 
strain in the form e ( t ) . r  ) = ai, the instan- 
taneous strain, to obtain 

~(t)  = ~ + o ( - o o ) ~ ( o o )  

+ ftooo(tl)O(t--tl)dt I ( 5 )  

Integration by parts then gives 

= + + f_' O(tl)q~(t --  t 0 dQ 

(6) 

in which r is commonly referred to as the 
instantaneous response of the process under con- 
sideration. By change of variables in Equations 5 
and 6 these equations can be expressed in the 
equivalent forms 

~(t)  = ~ + o e - o o ) ~ ( o o )  +~ 
0 

d(t -- u ) o ( u )  du 

and (7) 

a i + a(t)r +fo o(t--u)~(u)du (8) 

Equations 5 to 8 are the Duhamel integrals [13] 
with r termed the creep compliance or retarda- 
tion ffmction for the process. Equation 6, under 
conditions of constant strain, defines a flow 
property and hence dg)(t)/dt can be termed a 
retardation current in analogy with dielectric 
relaxation [2, 11]. Fig. la shows, schematically, 
the time dependent strain response to a step 
function applied stress and includes a viscosity 
term, rL for generality. 

In a similar manner we can consider the material 
responding to a time-dependent strain. In this case 
it is necessary to examine the initial conditions 
with some care. For a step function increase in 
strain the initial response will be a step function 
increase in stress, of large magnitude. As before 
we single out the particular process to be exa- 
mined as occurring in the time scale that is of 
interest. The other relaxation processes which 
occur on a shorter time scale reduce the "instan- 
taneous" value of stress to the unrelaxed value 
[14] for the process which is under consideration, 
which then relaxes the stress further, but not 
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Figure 1 Diagrammatic representation of the time dependence of (a) strain retardation and (b) stress relaxation for step 
function excitation, a is the stress, c~ is the strain and ~ is the time-independent viscosity. 

necessarily completely. The characteristic values 
of  stress are therefore the effective initial stress, 
% and the infinite time relaxed value, o(,~), 
which is attained after the process of interest 
has relaxed the system. At a time t the observed 
stress for a general strain is obtained by a similar 
approach to that contained in Equations 1 to 4 as 

(~(t) = O i - -  Or(-- ~176176176 - -  f foo &( t l )O( t  - -  t l ) d t l  

(9) 
where the term ~(--oo)0(o~ again represents the 
contribution of the process under consideration 
from a strain existing at the onset of the exPeri- 
ment. A second set of Duhamel integrals can be 
developed from Equation 9 but the one which is 
of direct use here is 

t p 

o(t) = o~-a(t)0(0)-j c~(tl)O(t --  t l )  d t l  
- o o  

(10) 

Considering now a step increase in strain from 
zero to So at zero time, Equation 10 can be 
expressed as 

t 

o( t )  = o i - - e o O ( O ) - - f  eo0(u)du (11) 
0 

which gives 

o( t )  = o i --  ~oO(t)  (12) 

If now we let 

~ ( t )  = O(oo) - -  O(t) (13a) 
then 

o( t )  = ~ o i ( t )  + oi --C~o0(~176 (13b) 

The function if(t) is commonly called the 
relaxation function but, as indicated above and 
in Fig. lb, is not ideally suited to describe stress 
relaxation as it has been artificially set to zero at 
infinite time. The more useful functions are the 
relaxation modulus, O(t), and the relaxation 

memory function, dO( t ) /d t  ( = -  d i ( t ) / d t ) .  Equa- 
tions 5 to 8 and Equations 9 and 10 are constitu- 
tive equations and express the response of the 
system to two different types of experimental 
techniques. Fig. 1 indicates, in diagrammatic 
form, the physical significance of the terms 
within these equations for the cases of both 
constant applied stress and constant applied 
strain where both the stress and the strain are 
applied at zero time. 

In a linear system, which we shall consider, 
the steady state stress and strain are proportional 
giving the compliance of the material as the 
ratio of the strain to the stress, and the modulus 
as the ratio of the stress to the strain. These 
definitions can be extended to the time domain 
by considering the time dependent compliance 
and modulus as given by 

J ( t )  = a ( t ) / a ( t )  and M ( t )  = o ( t ) / a ( t )  

(14) 

respectively. The latter is commonly used in the 
description of the elastic properties of materials 
whereas under conditions of steady state shear 
flow in a liquid the compliance approach can 
be used to define the steady state viscosity, ~7, 
through Newton's relationship 

r~ -1 = ~ /6  (15) 

Since the advent of polymeric materials the 
distinction between these two classes has become 
less obvious. The general group of materials which 
exhibit partial elastic recovery and partial flow are 
termed viscoelastic. The particularization of the 
modulus and compliance functions in Equations 14 
to non-isotropic materials has received consider- 
able attention, a clear development is contained 
in [14], but vdll not be considered here. Instead 
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we shall consider the inter-relationships between 
the relaxation and retardation functions in the 
rest of  the present section. 

where f f  indicates a one-sided Fourier transfor- 
mation. Applying the transform to Equation 19 
gives 

2.2. T ime  and f r e q u e n c y  response  
The linear response to a step function shear stress 
can be expressed as 

o = 0 for t < O  
J( t )  = e ( t ) /o  with 

a = o0 for t~>0 

(16) 

and the linear response to a step function strain as 

c~ = 0 for t < 0  
M(t)  = a(t) /a with 

r = So for t~>0 
(17) 

Noting that Equation 2 contains the condition 
that at zero time the creep compliance is zero and 
allowing for a Newtonian viscosity under creep 
conditions we have from Equation 6, when (t -- t l)  
is set equal to u, 

J( t )  = (el/Oo) + Jo f~  q~(u)du 

+ fo  t (rl)-1 du + Jo q~(O) (18) 

= Ji + Jo (~(t) + (t/q) (19) 

where Ji is the "initial" response due to the short 
time scale processes and Jo is the magnitude of the 
increment of the time-dependent compliance from 
the process under consideration. From Equation 12 
we have that 

M(t)  = M i - M o O ( t )  (20) 

where M i is the initial, faster process relaxed, 
response and Mo is the magnitude of the time- 
dependent modulus decrement. With generality a 
viscous term could appear in Equation 20 but this 
has been suppressed for, in the presence of a non- 
infinite viscosity, the modulus relaxes through the 
viscosity as well as through the relaxation process, 
as will be shown in Section 3.2. In Equations 19 
and 20 the amplitudes Jo and Mo have been 
abstracted as factors from the functions ~(t) and 
0(t), which therefore become dimensionless. 

The response of the system to an oscillatory 
stress/strain, the anelastic response, can be deter- 
mined from the principle of superposition as 

d d 
J(co) = ~ - - ~ J ( t )  and M(co) = ~ ' -  M(t)  

(21) 

. . ,  =  22, 

= J (~)  + J o F ( w )  -- i(corT)-* (23) 

in which, following experimental observation, 
we have replaced the Fourier transform of the 
delta function (dJi/dt) by the "infinite frequency" 
compliance J(~) .  The function F(co) is a complex 
spectral response function which becomes purely 
real and of magnitude unity at zero frequency 
and zero at infinite frequency. 

Application of the Fourier transformation to 
Equation 20 yields 

M(co) = ~ - ( d M , - M o O ( t ) )  (24) 

= M(~) - -MoG(co)  (25) 

where M(oo) is the zero time, "infinite frequency", 
unrelaxed modulus [14] and G(w) is a complex 
function with a real magnitude of unity at zero 
frequency and zero at infinite frequency. In the 
absence of a viscosity term, that is for infinite 
viscosity, examination of the relative phase of  the 
driving and driven components of  stress and strain 
show that [1,2, 14] 

J(oo).M(co) = 1 (26) 

which gives a technique for transforming between 
the compliance and modulus functions. In the 
remainder of this section we examine this relation- 
ship. 

2.3. Convolut ion integral 
Substituting Equations 22 and 24 into Equation 26 
gives 

(27) 
which can be written in the forms 

Y - ~  [:ilJo + r -- ~(0)1 

~ . d  [Mi/Mo _ 0(r)] = (YoMo)-' (28) x dt 
and 

[J,/Jo + 

x [Mi/M o -- O(t -- r)] dr = -- t/(JoMo) (29) 
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in which Equation 29 is the convolution integral 
of the retardation and relaxation functions. If 
these functions are mathematically simple then 
either Equation 28 or Equation 29 can be a useful 
means of obtaining a compliance/modulus trans- 
formation. In general, however, for non-trivial 
cases, the solution of these equations can prove 
difficult. 

2.4. Analy t ic  solut ion 
An alternative approach to the compliance/ 
modulus transformation is to substitute Equations 
23 and 25 into Equation 26 to obtain 

[JoF(co) + j(oo)] x [M(o~) - -M0a(w)]  = 1 

(3o) 

it] which, once again, we consider only the infinite 
viscosity case. One particular case of Equation 26 
is 

J(o~).M(oo) = 1 (31) 

which, on substitution back into Equation 30, 
gives 

-- JoMo F(co) G(co) + SoM(~176 

- -  J(oo)MoG(co) = 0 ( 3 2 )  

from which the magnitude of the modulus disper- 
sion decrement can be obtained in terms of the 
compliance dispersion parameters by taking the 
zero frequency limiting values of G(co) and F(co). 
It is simple to show that 

J0 
M0 = M(~176 Jo + S(~) (33) 

which gives the magnitude of the relaxed modulus 
as 

M(0) = M(~176 -- M0 = [J0 + j(oo)]-I = j (0) - I  

(34) 

which contains a second particular case of Equa- 
tion 26 and indicates that as J(O) is always positive 
the magnitude of the modulus cannot become 
negative, that is Mo < M(~). 

Using these values the spectral response func- 
tions can be determined from Equation 32 as 

j(oo) Jo } 
[G(co)] -~ - J(0) [F(co)]-i + j(oo) 

and 

[F(co)l-J - M(~176 
M(0) 

[G(co)] - l  

( 3 5 )  

- - 2 2 ) }  (36) 

giving the modulus response in terms of the 
compliance as 

M(co) = M(oo) -- M0 G(co) 

= M(oo) 1 --a{.~) [f(co)]-I  + 

(37a) 

and the compliance response in terms of the 
modulus as 

J(co) = JoF(co) + j(~o) 

= 1 [o(co)]-, MT-)j ! 

(37b) 

One feature contained in Equations 37 which 
is not obvious is that the maxima in the loss 
components of the compliance and modulus 
do not necessarily occur at the same frequency. 
Furthermore the ratio of the frequencies of 
maximum losses is dependent on the relative 
magnitude of the dispersion increment/decrement 
of the process being considered. Defining the 
relative magnitude of the dispersion as 7 where 

S(oo) M(0) 
- - -  where 1~>7~>0 

V -  S(0) M(oo) 
(38) 

and assuming the Debye spectral function as the 
simplest form of F(w), that is 

1 
F(co) = 

1 + ico/cov.a 

where co is the frequency and COp, g the frequency 
of peak loss for the compliance, the peak in the 
loss component of the modulus can be shown to 
occur at the frequency 

COp, M = COp, J "  (,,/)-1 ~ OOp, j (39) 

Equations 38 and 39 indicate that a large disper- 
sion in either compliance or modulus is accom- 
panied by a large frequency shift in the peak loss. 
Further, it can be shown that the assumption of 
a Debye function for G(co) recovers Equation 39. 
Hence it is a general feature of the compliance/ 
modulus transformation of a retardation/relaxation 
process in the absence of a viscous-like flow that 
the peak loss in the modulus spectrum lies at a 
higher frequency than that of the compliance 
spectrum. 
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In the particular case where the dispersion is 
small, that is as 3' approaches unity, Equations 37 
give 

F(co) ~-- a(co) (40) 

Unfortunately this simple and convenient result 
cannot be taken as being of  general applicability 
although it is certainly likely to apply under 
acoustic absorption conditions where the real 
part of  the dispersive process is seen as a small 
change in the velocity of  the acoustic wave. 

3. Cooperative relaxation and retardation 
3.1. Relaxation behaviour 
It is generally accepted, as discussed in [1, 2], that 
there is a formal correspondence between the 
compliance functions of  mechanical relaxation 
and the susceptibility functions of  dielectric 
relaxation. Section 2b, by considering the infinite 
frequency compliance, extends the correspon- 
dence to the dielectric permitivity as j(oo) is 
equivalent to e=, the "infinite frequency" per- 
mittivity. Table I lists the dielectric, compliance 
and modulus functions, in terms of  the notation 
and approach used here. There is, however, one 
essential difference in the behaviour. In the 
dielectric case a response can be observed even 
when there is no dielectric material between the 
plates of  the test capacitor. This is the vacuum 
response and due to the change in plate charge. 
The absolute vacuum value for the permittivity, 
eo, allows the permittivity of  all materials to be 
expressed in relative, dimensionless, units. In the 
mechanical cases there is no equivalent to the 

vacuum response, a vacuum cannot withstand 
a mechanical stress, and hence it is not possible 
to define either compliance or modulus in relative 
terms. The vacuum response, furthermore, is a true 
instantaneous response and is one component of  
the infinite frequency permittivity. In practical 
mechanical systems inertia negates even the 
possibility of  a similar true instantaneous response. 
However when materials are being investigated in 
a particular time or frequency range the combined 
response of  all processes which occur on shorter 
time scales, and hence at higher frequencies, result 
in the measurable values of  J("~) and M(oo), as 
already discussed. The exact equivalence to these 
processes can be seen in the dielectric response 
where the measured value of  e~ for the kHz range, 
for example, is invariably greater than the square 
of  the refractive index which is, in turn, greater 
than unity, indicating the presence o f  more than 
one dispersion process. 

The authors have proposed a cooperative 
theory of  dielectric relaxation [8 -10 ]  which has 
recently been re-cast into a cluster model form 
[15, 16]. It has also already been shown [17] that 
the spectral response function derived from the 
cooperative model is applicable to compliance 
data over a range o f  material types. In this section 
the mechanical equivalences to the cooperative 
dielectric functions will be obtained although the 
discussion of  the model o f  mechanical response 
will be deferred to a later article. 

Consideration of  the cooperative model has 
resulted in a description of  the dielectric relax- 
ation current, Table I, in the form [8, 15, 16] 

T A B L E I Comparison of dielectric and mechanical relaxation functions 

Dielectric Compliance Modulus 

Applied electric field, E(t)  
Resultant polarization, P(t)  
Dielectric susceptibility, 

x = dP/dE 

Relaxation current, f(t) = dP/dt 
Permittivity, 

e(w)  = x(w) + e~ 

= x(O)'F(~) + ~ 

Electrical resistance, 

R = Ede/Jde 

Time dependence of polarization, 

P(t)  = P(O) . f ( t )  

Applied stress, a(t)  
Resultant strain, c~ (t) 
Mechanical compliance, 

J : da/da 

Retardation current, Jo dq~/dt 
Anelastic compliance, 

Y ( ~ )  = 3"oF(w) + J (~ )  

Viscosity, 

n = (~) - ldo /d t  

Creep retardation function, 

qJ(t) = ~(t)--q~(O) 

Applied strain, c~(t) 
Resultant stress, cr (t) 
Mechanical modulus, 

M = do/de 

Memory function, ModO/dt 
Anelastic modulus, 

M ( w )  = M(o~) - - M  o G(co) 

Viscous loss, 

Vog(W) 

Stress relaxation function, 

~( t )  = o(~o)--o(t)  
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Log ~" 

]'(t) cc (copt) -n exp (--  copt)lFl(1 - - m ;  2 - - n ;  copt) 

~'t > 1 (41a) 

and 
j(t) cc exp ( - a t  2) f t  < 1 (41b) 

where COp is the characteristic relaxation rate of  the 
dielectric process under investigation, 1FI( ; ; ) is 
the confluent hypergeometric function [18, 19] 
and rn and n are fractional correlation indices for 
the intra-and inter-cluster cooperative relaxations 
that give the complete response [8]. The short 
time behaviour of  Equation 41a is dominated by 
the intra-cluster relaxation with a time develop- 
ment of  the asymptotic form (COpt)-", for times 
greater than a value ~'-' appropriate to the local 
structure, where ~--i is expected to lie in the 
range 10 -12 t o  10 -11 sec. This behaviour lasts 
until times of  the order of  the reciprocal of  the 
relaxation rate after which inter-cluster relax- 
ations dominate giving an asymptotic decay of  
the form (COpt) -(l+rn). In the transition region, 
that is for COpt ~ 1, a limited region of  exponential- 
like behaviour is found, and at very short times, 
t<~ ' ,  the zero time value of  the current is 
approached as a Gaussian, Equation 41b, so that 
there is no divergence of  the current at zero time. 
The magnitudes of  the correlation indices m and 
n are always positive and less than unity. Relax- 
ation, as indicated in Fig. 2, is characterized by 
current decay power law behaviour with experi- 
mentally observed values o f  m and n that are 
positive. 

A recent development of  the cooperative 
theory [20] has shown that the experimentally 
observed value of  m can be negative. This is a 
result o f  correlated flow of  charges in the material. 
In this case the long time asymptotic behaviour 
of  the current takes the form (COpt) -O-[ml), 

Figure 2 Schematic representation of the 
complete cooperative decay function of 
Equation 41. ~" is the characteristic fre- 
quency at which the Gaussian limiting 
behaviour gives way to the first power law 
decay region and tOp is the characteristic 
rate for the relaxation process under obser- 
vation. It can be seen that the long time 
limiting case with the observed value of 
m equal to --1 corresponds to a time- 
independent d.c. conductivity. Both the 
relaxation and flow regions of behaviour 
at long times are indicated. 

giving the apparent anomaly in the sign of  m. 
As shown in Fig. 2 this behaviour, as the mag- 
nitude of  m approaches unity, can be mistaken 
for the onset of  a d.c. conductivity but as long 
as the magnitude is not exactly unity it is correctly 
described by the anomalous low frequency dis- 
persion process [12] which has been observed 
experimentally in fast ion conductors and other 
materials in which charge flow is essentially ionic 
and which leads to a large low frequency disper- 
sion in both the real and imaginary parts of  the 
permittivity. From Table 1 it can be seen that the 
function represented schematically in Fig. 2, 
the time-dependent relaxation current, is equiva- 
lent to the time evolution of  the compliance 
retardation function ~(t). Hence we expect two 
different forms of  mechanical response, one 
corresponding to the relaxation region ofbehaviour 
with the observed value of  m being positive and 
the second to the  flow region with the observed 
value of  m taking a negative value. 

One-sided Fourier transformation of  Equation 
41 gives the dielectric susceptibility spectral 
function in the form 

X(co) = X(0 ) ' (1  +iw-~--t -O-n)cop] 

( 1 ) 
x2F1 1 - - n , l - - m ; 2 - - n ;  l+ i / o / cop  

(42) 

where X(0) is the zero frequency magnitude of  
the susceptibility, and is real. It is Equation 42 
that has been shown to be applicable to the 
observed spectral response of  the compliance [17] 
and hence we shall use it as the basis for the 
determination of  the mechanical response func- 
tions. Equation 42 can be re-expressed directly in 
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Figure 3 Computed plots of (a) the retardation current, (b) the creep retardation function, (c) the relaxation memory 
function, and (d) the relaxation function from Equations 40 and 45 using the following values of the correlation 
parameters: rn = n = 0.5; . . . .  rn = 0.3, n = 0.7; m = 0.7, n = 0.3;and ........... m = n = 0.3. 

the compliance spectral response form as 

F(co) = Fo(1 + ix) -u- 'O ( 1) 
x z F t  1 - - n , l - - m ; 2 - - n ;  

(43) 

by letting x = co/cov,a be the reduced frequency 
and Fo a normalizing parameter such that 
F(co = 0) is unity, as required by Equation 23. 

Fo is then given by 

F0 = P(1 --n +m) / [ r (m) 'Y (2 - -n ) ]  (44) 

where P(  ) is the gamma function. Inverse Fourier 
transformation of  F(co) gives 

1 
~(t) - r ( 1 - - n )  cop'aF~ 

x e-Y tFt(1 - - m ;  2 - - n ; y )  (45) 

where y = (cop,at). Integration of  this equation, 
making use of  the condition, Equation 2, that 
~(0) is zero then yields 

1 
~ ( t ) -  Y ( 2 - - n )  F~ 

x zF2(1 - -n  + m ,  1 - - n ; 2 - - n ,  2 - - n ; y )  

(46a) 
and 

ff(o~) = 1 (46b) 

Fig. 3a presents the form of  the creep retarda- 

tion function ~(t) and the retardation current, 
q~(t) (= ~(t)), for a range of  value of  correlation 
indices m and n as given by Equations 46a and 
45 respectively. The particular values of  m and n 
used here have been chosen simply to indicate 
the type of  behaviour that can be seen. Under 
the condition for which Equation 40 applies, 
3' -+ 1, it can be seen that 

(o(t) ~- O(t) (47a) 
and ; 3' -+ 1 

r ~- O(t)-- 0(0) (47b) 

Making use of  these expressions the equivalent 
relaxation functions are presented in Fig. 3b. 
It is re-emphasized that the relations contained 
in Equations 47 are specific for the limit o f  3' 
approaching unity, that is a small dispersion 
process. 

A more general approach to the form of the 
modulus functions can be indicated by equating 
the imaginary parts of  Equation 32, 

M(oo) G"(co) 
/140 [G'(co)] 2 + [G"(CO)] 2 

s(oo) F"(co) 
- Jo [F'(co)] 2 + [F"(co)] z (48) 

in which we have written 

g(co) = F'(co)--iF"(co) (49a) 
and 

G(co) = G'(co)--iG"(co) (49b) 

Equation 48 shows that as the frequency ap- 
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proaches zero 

G"(o.,) --, F " ( co ) .3 ` ;  co --, o (5o) 

so that  in all cases the low frequency loss modulus 

has the spectral form of  the compliance loss in the 
same frequency region. For  frequencies greater 
than the peak loss frequency of  the compliance, 
LOp, j ,  w e  have already seen, in Section 2.4, that a 
similar one to one transformation cannot be 
achieved because of  the shift in the modulus loss 
peak frequency into this region. However when 
F(co) is of the form contained in Equation 42 

[211 

F"(w)  = F'(co) .cot(mr/2)occo-O-");  co-.oo 

(51) 

so that the right-hand side of  Equation 48 has a 
spectral respqnse of  the form co +O-n) which 
would be satisfied if  the modulus function obeyed 
a similar relationship to that contained in Equa- 
tion 51. This is obviously the case when 3' 
approaches unity. 

Fig. 4 shows the computed transformations 
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of the compliance function in terms of  the modu- 
lus spectral function G(co) for a range of  values 
of  the ratio of  compliances Jo/J(oo) which, for 
convenience, we set equal to/3 where 

3 = 3`-1--1 

using the same values of  correlation indices as 
used in the previous figure. The features indi- 
cated in the previous discussion can be seen. In 
particular the equivalent gradients in the l og - log  
plots of  the loss components at frequencies 
below the loss maxima; the equivalent loss maxima 
frequencies when /3 is small (3`-+ 1); and the 
distortion introduced into the modulus function 
as 13 increases. In Fig. 5 the complete modulus 
spectral response, M(co), derived from the decre- 
ment plots of  Fig. 4 are given and reinforce these 
observations. 

The cooperative relaxation/retardation func- 
tions have been summarized in the Appendix 
for the cases considered above. The observation 
of  power law behaviour in the asymptotic limits 

is a convenient technique for determining the 
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Figure 5 The modulus spectral response determined from the G(w) response presented in Fig. 4b and c. The form of 
line marking is identical to that used in Fig. 4. (a) m = 0.3, n = 0.7; (b) m = 0.7, n = 0.3. 

correlation indices of the cooperative behaviour 
and in the Appendix these limiting behaviours 
are indicated. 

3.2. Viscous behaviour 
The perfect viscous behaviour of a Newtonian 
liquid has been characterized in Equations 15, 
19 and 23 as 

~-1 = c~lo; a(t),~ = t l~;  a(CO),~ = - i ( C O ~ )  -~ 

from which the equivalence between the viscosity 
and electrical resistance is apparent as given in 
Table I. As we wish, in this section, to examine 
the effects of viscosity by itself we set Jo in 
Equation 23 to zero, so that/14o is also zero, and 
re-write Equation 30 in the form 

j(o~)--  "[M( ~ 1 7 6  V0g(CO)] = 1 (52) 

in order to obtain the effective spectral response 
of the viscosity in terms of the modulus as 

M(~) 
Vog(CO) = ( s 3 )  

1 + i[CO~7/M('~~ 

Equation 53 describes a Debye-like behaviour 
of magnitude M(~) and maximum loss frequency 
COy, v = M(~176 �9 This gives a sensitive test for the 
observation of Newtonian viscosity. Further we 
note that, as indicated earlier, in the presence of a 
viscosity there is always a frequency which is 
sufficiently small, say two orders of magnitude 
less than COp, v, at which the magnitude of the 
modulus response approaches zero. The equivalent 
time can be considered as the time to reach the 
steady state which contains no stress. 

3.3. Viscoelastic behaviour  
Perfect relaxation behaviour is commonly ob- 

served under conditions of  small stress and strain 
in metals whereas viscosity is commonly attri- 
buted to liquid-like materials. Viscoelastic behav- 
iour which contains elements of both elasticity 
and viscosity is commonly observed in rubbers 
and plastics. In the modulus representation of 
viscoelastic response there is a peak in the loss 
component and both the real and loss components 
decrease to small values as the frequency tends to 
zero [22]. The essential difference on a compli- 
ance plot between viscoelastic behaviour and 
viscous behaviour is the dispersion in the realpart  

of the compliance, c.f. Equation 52. It is just this 
pattern of behaviour in electrical relaxation 
studies that led Jonscher [12] to identify the 
anomalous low frequency dispersion as aseparate 
type of relaxation response which, although it 
contains elements of charge transport, is not a 
d.c. conduction process. Fig. 6 contains plots of 
the modulus transformation of Equation 42 using 
negative values of m in the allowed range from 
zero to unity and the similarity to the broad 
pattern of the behaviour of viscoelastic materials 
is striking. 

One feature of these plots is the position of 
the maximum in the loss component of the 
modulus. All the diagrams are scaled in frequency 
with reference to the characteristic frequency of 
the compliance function, COp, J. For small values 
of ~, and particularly as m approaches -- 1, it can 
be seen that COp, M < COp, j ,  in complete contrast 
to the condition derived for compliance loss peak 
behaviour and which is contained in Equation 39. 
In practice for strongly viscoelastic materials m 
does tend to approach its limiting value and hence 
it appears general that the viscoelastic modulus 
relaxation rate will be less than that of the equi- 
valent compliance characteristic rate. We note, 
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however, in all the cases considered here the actual 
relaxation rate for the modulus is i d e n t i c a l  to that 
for the compliance. It is the a s s u m p t i o n  that the 
peak loss frequency defines the relaxation rate 
that causes the apparent change in magnitude. 

For completeness a further complication should 
be realized. Only in the case of symmetrical com- 
pliance loss peaks, that is when m = 1 - n and an 
elastic response is being considered, is the peak in 
the compliance loss identical to the relaxation 
rate. In all other cases the skewness introduced 
into the loss characteristic shifts the peak loss 
value away from the characteristic frequency 
cop,,r in the direction of lower gradient. This can 
be seen in Fig. 4 in which the relevant compliance 
function has been plotted as well as the modulus 
decrement spectral function. The shift, in this 
case, is relatively small even for quite asymmetric 
loss plots. 

4. Experimental behaviour 
The published literature on retardation and relax- 
ation behaviour has been examined in order to 
obtain suitable experimental data by means of 
which a comparison with the theoretical functions 

derived in the previous section could be carried 
out. Unfortunately few materials appear to have 
been investigated by more than one experimental 
technique and hence none of the cases reported 
here allow a cross-check from one investigative 
technique to another to be made. The data has 
been chosen solely with the criterion that a good 
range of frequency/time should have been reported 
in order that a meaningful comparison with the 
theoretical functions might be made. The original 
units in which the information was presented have 
been retained. No particular emphasis has been 
placed on the frequency dependence of the 
compliance as this has already been the subject of 
a previous examination [ 17]. 

4.1. Strain re ta rda t ion  
Figs. 7 to 9 present data on the time dependence 
of the compliance. The data shown in Fig. 7 was 
obtained by Plazek and Magill [23] on 1:3:5 tri- 
s-naphthalene and has been normalized to the 
infinite time value of the compliance. The nor- 
malized plot presented here has been constructed 
from four sets of data in the temperature range 
337.3 to 352.2 K, making no assumptions about 

B 
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Figure 7 Creep relaxation in 
1 : 3 : 5 tri-c~-napthalene benzene 
normalized from the data of 
Plazek and Magill [231. The 
plot through the data points 
is given by Equation 46 with 
m = 0 . 9  and n = 0 . 6 6 .  The 
diagram is scaled at 337.2 K. 
In this and the following two 
diagrams the relaxation rate 
(Wp, j )  -~ is indicated. �9 337.2 K; 
+ 342.2K; •  and o 
352.2 K. 
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Figure 8 Creep relaxation in natural rubber from the 
data of Conant etal. [24]. The data points have been 
taken from a temperature normalized plot covering the 
range 2t3 to 304 K. This diagram is scaled for 213 K. 
The plot through the data is given by Equation 46 with 
m = 0.1 and n = 0.29. 

the form of  the temperature dependence of  the 
relaxation rate. The plot through the experi- 
mental points is given by Equation 46 with 
n = 0.66 and rn taken as 0.9. It was found that 
the function was relatively insensitive to the 
value of  rn although strongly sensitive, in the 
short time power-law region, to the value of  n. 
The equivalent data shown in Fig. 8 was obtained 
from a shear experiment on natural rubber by 
Conant etal. [24] in the temperature range 213 
to 304 K and the data here has been taken from 
the normalized plot that was presented. The 
theoretical curve in this case was computed with 
n = 0.29 and m = 0.1. 

In Fig. 9 similar results obtained from a sample 
of  polystyrene are shown. This data was measured 
by Plazek [25] who constructed this normalized 
plot from his data. Here the effect of  a finite 
viscosity and a finite zero time compliance can 
be seen superimposed on the creep retardation 
curve. The computed creep characteristic, shown 
by the fine dashed plot, was obtained from 

Equation 46 with m = n  = 0.2. As expected, 
Equation 19, the viscosity dominated region 
has a gradient of  exactly unity in this log- log 
presentation. 

The frequency dependence of  the shear com- 
pliance of  two rubbers is shown in Fig. 10 where 
the experimental data has been fitted to the 
spectral response function of  Equation 43 with 
the values of  the parameters m and n listed in the 
legend to the figure. It can be observed that in 
both cases the index n has a value close to 0.4 
but that the crepe rubber has a slightly larger 
value of  m than that exhibited by the butyl 
rubber. In neither case is there a significant effect 
from an "infinite frequency" value of  the com- 
pliance, which has been taken as zero in the 
computation. The figure also indicates that the 
retardation rate in the crepe rubber is about 
fifteen times larger than that in the butyl. The 
information contained in this figure has been 
taken from the experimental work of  Blizzard 
[261. 

More complex frequency behaviour is indi- 
cated in Fig. 11 for two polymers, polyvinyl 
acetate [27] and poly-r/-butyl methacrylate 
[28]. In both cases two dispersive processes 
occur in the frequency range covered by the 
normalized data. At the lower, relative, fre- 
quencies there are loss peaks just evident, indi- 
cative of  an elastic response, whilst at higher 
frequencies anomalous compliance dispersions 
are dominant. It has been found possible, how- 
ever, to construct theoretical fits to each of  these 
processes individually, in both cases, as can be 
seen from the curves plotted through the experi- 
mental points. The region of  transition from one 
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Figure9 Creep relaxation in 
polystyrene from the normal- 
ized data of Plazek [25]. Both 
a viscosity and an initial com- 
pliance are indicated. The 
dashed curve through the creep 
relaxation response was ob- 
tained from Equation 46 with 
m =n  =0.20. 
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Figure 10 The frequency response of  the shear compli- 
ance of two rubbers from the work of Blizzard [26]. 
The samples were measured at 278 and 293 K and the 
data have been taken from the temperature normalized 
plots. The curves through the data points are given by 
Equation 43 with the listed values for the parameters 
m and n. No evidence was found for an "infinite fre- 
quency" compliance. In this and the following five 
figures the characteristic rate constant, cop,j, is indi- 
cated, o butyl rubber; m = 0.39, n = 0.41; 
�9 crepe rubber; ................. m = 0.45, n = 0.40. 

description to the other is indicated by the arrows 
in the diagrams and in this region there is an equi- 
valence between the m and n values, m = n - 1, as 
indicated in the legend. Hence the complete fit of  
these complex responses has been made with only 
three free parameters. 

4.2. Stress relaxation 
The frequency response of the stress relaxation has 
been determined for the cooperative approach by 
making use of the transformation of Equation 37a 
and the response function contained in Equation 
43. The computed spectral functions are given in 
Figs. 12 to 15. Fig. 12 presents the Young's modu- 
lus response of poly(4-chlorocyclohexyl acrylate) 
in the temperature range from 203 to 295 K 
from the data of Heijboer [29] in the form of a 
normalized plot. The small dispersion in the real 
part of the modulus indicates that the approxi- 
mation 7 -~ 1 should apply and the figure shows 
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Figure 11 The normalized fre- 
quency response of the com- 
pliance of (a) polyvinyl acetate, 
and (b) poly-n-butyl methacry- 
late. In both cases the normal- 
ized plot covers a large relative 
frequency range and two relax- 
ation processes can be seen, a 
loss peak at low frequencies 
and an anomalous dispersion 
at higher frequencies. In (a) 
the data has been taken from 
the work of Williams and 
Ferry [27[. The original mea- 
surements covered the tem- 
perature range from 223 to 
363K,  the plot is scaled at 
363 K and the theoretical curves 
are given by . . . . .  m = 0.01, 
n = 0.14; . . . .  m = - -0 .86 ,  
n = 0.53, # = 3.67. For (b) the 
data was taken from Child and 
Ferry [28], the original tem- 
perature range was 317 to 
343 K, the plot is scaled at 
403 K, and . . . . .  m = 0.3, 
n = 0 . 3 ;  . . . .  m = - - 0 . 7 ,  
n =0 .67  with /3=19.8 .  The 
transitions between the pro- 
cesses are indicated by the 
double sets of  arrows. 
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Figure 12 The normalized fre- 
quency response of Young's 
modulus in poly(4-chlorocyclo- 
hexyl acrylate). The data were 
measured in the temperature 
range between 203 and 295 K 
by Heijboer [29]. The diagram 
is scaled at 273 K and the plots 
through the data are given by the 
transformation of Equation 37a 
on the spectral function of 
Equation 43 with m = 0.57, 
n = 0.50 and/3 = 1.03. 

the good fit to the experimental data that has 
been obtained taking m = 0.57, n = 0.50 and 

/3 = 1.03 (3' = 0.49). The data exhibited in Fig. 13 
is taken from the experimental work of  Read and 
Dean [14]. In Fig 13a both the tension and shear 
moduli  of  perspex at 294 K are plot ted together 
with the spectral function given by rn = 0.135, 
n = 0.85 and/3 = 1.38. The plot  is scaled for shear 
and the modulus axis requires to be multiplied by  
a factor of  2.6 for the tension data. Fig. 13b shows 
a similar plot for the shear modulus response of  
unplasticized polyvinyl chloride at the same 
temperature,  and in this case the values of  the 
parameters used in computing the spectral func- 
tion were m = 0.22, n = 0.85 and /3 = 0.54. In 
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these three cases the spectral response o f  the loss 

component  of  the modulus is broad, typical  of  
the behaviour of  polymeric materials. Furthermore 
all three examples show behaviour which would 
transform into loss peak spectra in compliance, 
that is they are elastic responses with finite values 
of  M(0).  

Viscoelastic behaviour is shown in Fig. 14 in 
linear polybutadiene,  Fig. 14a, and hydrogenated 
linear polybutadiene,  Fig. 14b. The former being 
taken from the work of  Rochefort  etal .  [30] 
and the latter from the work of  Raju et  al. [31]. 
Both sets of  data are characterized by large values 
of/3 ( 2  400) and the effect of  hydrogenation on 
the spectral response can only be seen as a small 
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Figure 13 The frequency response 
of the modulus of perspex and 
polyvinyl chloride from the investi- 
gations of Read and Dean [14] at 
294 K. (a) Perspex in shear and 
tension. The shear data requires 
to be multiplied by a factor of 
2.6. m=0.135,  n=0 .85  and ~3= 
1.38. (b) Unplasticised PVC. m = 
0.22, n = 0.85 and j3 = 0.54. 
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Figure 14 The frequency re- 
sponse of the modulus of  two 
samples of  linear polybutadiene. 
(a) A sample of  molecular weight 
7 9 1 0 0 0  [30],  m = - - 0 . 9 7 ,  n = 
0.68 and # = 415.  (b) A hydro- 
genated sample of molecular 
weight 3 6 0 0 0 0  [31] ,  m = 
- -  0 .97,  n = 0.5 and ~ = 420.  

change in n from 0.6 for the unhydrogenated 
material to 0.5 for the hydrogenated. The samples 
however had a 2:1 ratio of  molecular weights 
and it is not possible to say, without further 
information, whether this or the hydrogenation 
is the cause of  the slight difference in the values 

of  n. One particular feature of  interest here is 
the asymptotic behaviour of  the modulus at low 
frequencies where both the imaginary and real 
components become parallel as shown in Fig. 14b. 
This can be contrasted with the equivalent low 
frequency behaviour exhibited by a sodium 
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Figure 15 The frequency response 
of the modulus of  a sample of 
NazO:2SiO 2 measured in the tem- 
perature range 687 to 785 K by 
Mills [32] .  The data points presented 
here have been taken from the 
normalized modulus response curves. 
The function plotted through the 
data points is the combined response 
due to a perfect viscosity, of  relative 
strength 0.45,  and an elastic com- 
ponent with m = 0 . 8 ,  n = 0 . 6  and 

= 1.12. 
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Figure 16 Stress relaxation in (a) 
aluminium, (b) cadmium, and (c) 
low density polyethylene, from 
the data of K~ [33] and Kubat 
[34]. The curves in these plots 
have been obtained by using 
Equation 54 and substituting 
~(t) for O(t). In the polyethyl- 
ene case there is clear evidence for 
the existence of a second relax- 
ation process at long times, the 
crosses having been obtained by 
taking the difference between the 
experimental data and the theor- 
etical function. The parameters 
used in fitting the data were (a) 
m=0.1,  n=0.66;  (b) m=0.1,  
n=0.7 ;  and (c) m=0.1,  n =  
0.46. The apparent constancy of 
m is due to the insensitivity of the 
plots to this parameter. The plots 
show the time range of measure- 
ment and the equivalent relaxation 
time (~%,j)-z is indicated in each 
case. 

silicate glass at high temperatures which is shown 
in Fig. 15. In this case there is a divergence 
between the real and imaginary components 
indicative of  viscous behaviour. The theoretical 
curves through the data have been obtained with 
normalized parameters m = 0.8, n = 0.6,/3 = 1.12 
and a viscosity, 7, of  0.45, which indicates the 
parallel response of  a perfect flow and a simple 
retardation effect which would give a compliance 
loss peak unlike the limited flow property exhibited 
by the polybutadiene in the previous figure. The 
data in Fig. 15 was obtained over the temperature 
range 687 to 785 K by Mills [32] and the points 
shown in the figure were taken from a normalized 
plot. 

The time dependence of  the stress relaxation 
is given by the inverse one-sided Fourier trans- 
formation of  the modulus spectral relaxation 
function. Alternatively the assumption can b e  
made that in the cases of  interest 3' approaches 
unity and Equations 40 and 47 apply. In this 
case the assumption can be tested by the degree 
of  fit between experiment and the postulated 
theoretical response. It is this latter approach 
that we shall follow here. In obtaining Fig. 3d, 

the stress relaxation functions, it was found that 
the time evolution plot of  stress relaxation was 
insensitive to the values of  the cooperative para- 
meters m and n, more so indeed than the similar 
insensitivity to m reported in this section for 
creep retardation. For this reason it has been 
found convenient to re-cast Equation 20 in the 
form 

M0 
1 M(t)Mi - MiM~ - ~ i ' r  (54) 

where the equivalence is the assumption to be 
tested. 

Three plots of  [1--M(t) /Mi]  are presented in 
Fig. 16 for the experimental data of  stress relax- 
ation in aluminium [33], cadmium [34] and low 
density polyethylene [34]. In each case the 
curve through the data is ~(t) as given by Equa- 
tion 45, and using the parameters listed in the 
legend to the figure. Very good agreement has 
been obtained for aluminium and cadmium. In 
the case of  the polyethylene there is clear evidence 
for a second, weaker, stress relaxation process on 
a time scale that is about four orders o f  magnitude 
greater than the principal relaxation. In Fig. 16c 
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the crosses have been obtained by plotting the 
difference between the experimental curve and 
the theoretical function. In all three cases it has 
been found, as for creep retardation, that the 
plots are relatively insensitive to the value of m 
nevertheless it can be seen that in all cases the 
initial stress decay is of a fractional power law 
in time form. 

5. Discussion 
The approach followed irt Section 2 reflects the 
conventional development of the constitutive 
equations and the convolution integral of mech- 
anical response [1, 2]. However in order to carry 
out the comparison with experimental data 
which is presented in Section 4 it was found 
necessary to evaluate the exact significance of the 
initial and final retardation/relaxation states. It 
is believed that the constitutive equations pre- 
sented here, Equations 5 to 10, are a correct 
representation of the creep and stress relaxation 
functions, and that Equations 27 and 29 correctly 
interpret the interrelationships betw~een the com- 
pliance and modulus in elastic and viscoelastic 
materials. The approach developed here differs 
from the conventional formalism by setting the 
response of a particular process within the frame- 
work of a general retardation/relaxation which 
contains more than one process. This is experi- 
mentally substantiated by, for example, the 
observation that of the ten systems investigated 
in the frequency domain only two, the butyl 
and crepe rubbers, indicate a negligible value 
for the infinite frequency compliance. In all 
other cases it has not been possible to consider 
the observed relaxation process in isolation. A 
further support for the general approach is given 
by the stress relaxation data where the finite 
initial value of the stress, M~, necessitates a zero 
time response of the system. 

The feature of the analytical development 
contained in Section 3 is the assumption of the 
applicability of the cooperative approach to 
dielectric relaxation [8-10,  15, 16] to the field 
of mechanical retardation/relaxation. The previous 
investigation [ 17] had indicated the applicability 
in terms of the frequency response of the loss 
component of the anelastic compliance. Here 
the investigation has been extended to creep 
retardation, stress relaxation and the full spectral 
response of both compliance and modulus. For 
the stress relaxation case it has been assumed that 

the dispersion parameter 3' approached unity. 
For the stress relaxation data there is no evidence 
of viscoelastic behaviour and with the metals it is 
known that there is a finite value of residual stress 
after the relaxation has been completed and a 
zero time relaxation is expected. Hence the 
assumption is justified as has been shown by the 
degree of fit obtained for these cases. For poly- 
ethylene it has been shown elsewhere [35] that 
the magnitude of the dispersion in the compliance 
arising from the equivalent process is small and 
hence here too the assumption is justified. 

All the experimental data examined have 
exhibited non-Debye behaviour. The conventional 
approach to this observation is to consider a 
distribution of Debye-like retardation/relaxation 
elements to be present in the material. Gross [1] 
has given a detailed account of the results of this 
assumption, and in particular has pointed out that 
the retardation spectrum of the distribution differs 
from the relaxation distribution for the same 
initial set of experimental data, whether these be 
in compliance or modulus form. Seldom has the 
initial assumption of a distribution of responding 
elements been questioned. It should be understood 
that the description of the response of the system 
in terms of either a retardation or relaxation 
spectrum is purely a mathematical transformation 
of the experimental data unless the spectra can be 
associated with some other distributed property 
of the system. This association has not been made 
in either mechanical or dielectric investigations 
mad hence there is little real support for the 
assumption itself. Furthermore, if we consider 
the distribution spectra as a model for the cooper- 
ative nature of the response of solids then it is a 
severely limited model for it assumes that each 
individual element, characterized only by its 
relaxation time, acts independently of all the 
other elements with the same or different relax- 
ation time. The independence which is built into 
the Debye model only allows interaction through 
a viscous damping which, itself, characterizes the 
relaxation time of the element. To our knowledge 
the only systems which exhibit true Debye behav- 
iour are weak polar gases. 

The cooperative approach followed here makes 
use of a system averaged characteristic relaxation 
rate and correlation parameters which are associated 
with two specific forms of cooperative dynamics, 
namely, inter-cluster cooperative motions and intra- 
cluster cooperative exchanges [16]. In Section 4 
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it has been shown that these three parameters, 
together with a magnitude of response, are suffic- 
ient to completely define the observed response of 

a single process of relaxation/retardation. In this 
approach the broadening of the single particle 
Debye response is a result of the internal coopera- 
tive motions, so that the measured response is a 
system average and not an average of individual 
systems. In this context it can be pointed out that 
the inverse relationships of Equations 35 and 36 
arise from consideration of the equation of motion 
of a coupled system and represent over-damping 
of a system resonance. 

The validity of the assumption of the coopera- 
tive model has been substantiated by the degree 
of agreement between the model and the wide 
range of experimental data reported in the pre- 
vious section. The significance of this observation 
will be examined elsewhere but for the present 
we consider that the cooperative relaxation model 
is as applicable to mechanical relaxation as it is 
to dielectric relaxation. The observation of two 
distinct classes of behaviour, loss peak behaviour 
in compliance, which gives rise to limited dis- 
persion in the modulus and can be associated 
with limited structural reorganisation, and ano- 
malous low frequency dispersion in compliance, 
which gives complete annihilation of the modulus 
at zero frequency and which can be associated 
with limited flow in the system, gives support to 
the use of elasticity and viscoelasticity as descrip- 
tions of retardation/relaxation behaviour. In the 
former case the compliance description is pertinent 
and in the latter the modulus representation is rele- 
vant. Other forms of data presentation are equally 
possible, for example in a viscosity dominated 
response a complex and frequency dependent 
viscosity can be derived [2] and used as a con- 
venient method of representation. The essential 
feature, however, is the commonality of the 
response of a system to different mechanical 
stresses and strains. Such presentations should be 
considered only as an aid to delineating specific 
features of the response of the system and not 
as a description of the response. 

One particular point in the use of data pre- 
sentation has been examined in some detail. This 
is the evaluation of the relaxation rate by means 
of evaluation of the maximum in the loss plots. 
It has been shown that such a definition only 
applies rigorously under elastic conditions and 
when m = 1 - -n  in compliance form. When the 

dispersion is small, that is when the magnitude 
of the peak loss is much less than the weakly 
dispersive real part, then the modulus form can 
be used under the same symmetry condition. 
In all other cases the skewness of the loss spectral 
form shifts the frequency of peak loss away from 
the true characteristic frequency and towards the 
frequency region of lower slope in a log-log 
presentation. On transformation into a modulus 
spectrum where the maximum loss is not small 
the frequency shift can be large and is dependent 
on the relative magnitude of the process under 
investigation and of the type of process. Under 
elastic conditions we expect the frequency of 
maximum modulus loss to be greater than the 
true retardation rate, whereas under viscoelastic 
conditions the converse will apply. However if the 
spectral shape in either compliance or modulus is 
unchanged under the action of an external variable 
such as temperature the relagve shift of the peak 
loss can be used in the evaluation of the change in 
the characteristic rate under the action of the 
variable. The error in the characteristic rate 
appearing in the absolute value. 

6. Conclusions 
The mechanical relaxation response functions 
have been generalized in order to evaluate the 
significance of the initial and final relaxation 
states in real materials. This has allowed the 
anelastic responses to be examined and analytic 
transformation functions between compliance and 
modulus to be established. The applicability of the 
cooperative model of relaxation has been sub- 
stantiated by making a detailed comparison with 
experimental data over a wide range of material 
types and techniques of investigation. It follows 
that the elastic behaviour is governed by limited 
configurational relaxations in the material, which 
are equivalent to the local structural reorganisations 
that take place in dielectric relaxation in the 
region of active dipoles. Furthermore the presence 
of viscoelastic behaviour has been shown to be an 
imperfect flow property and analogous to the 
anomalous low frequency dispersion process 
which has been observed dielectrically in 
materials containing free ions. In the limit 
of free flow the mechanical response is domi- 
nated by a totally real viscosity, just as 
direct current conduction dominates the 
electrical response under the equivalent "free 
carrier" conditions. 
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Appendix: mechanical response functions 
1. Creep retardation function 

71-11 
J(t)  = JoFo - -  2F2 

P(2 - - n )  

x ( 1 - - n  + m ,  1 - - n ; 2 - - n , 2 - - n ; - - y )  

limit approximations 
(A1) 

J(t) 
y > 1 1 - a ' y - m  (Ala)  

Jo 

JCt) 1 y , -n  (Alb)  
y < 1 J0 - Fo r ( 2  -n-------) 

2. Spectral response of compliance 

J(co) = J ' (w)  -- iJ"(co) = JoF(r + j(oo) 

with 

F(co) = Fo(1 + ix) m-1 

x zF1 (1 - - n ,  1 

limit approximations 

x > l  

x < l  

- - m ; 2 - - n ;  1 + @ x  ) 

(A2) 

F'(co) cc F"(co) cx co n-a (A2a) 

F(0)  --  F'(co) cc F"(co) cx co rn (A2b) 

3. Spectral response of modulus 

M(co) = M ' ( w ) - - i M " ( w )  = M(oo) -MoG(w)  

with 
G(CD) = J(0) { Jo / -1 

j(oo----) [F(co)]-1 q_ J ~ )  (A3) 

limit approximations 

x >> 1 G'(co) cr G"(w) ~ co '~-1 (A3a) 

x < 1 G"(~)  cc 69 rn (A3b) 

4. Stress relaxation function 
ForMo "~Mi 

M(t)  J(t)Mo 

Mi J o M i  
(A4) 

limit approximations 

y > l  M(t)  ~ ( ___~i ) + __~i ay - -  1 M o  M o  - m  

(A4a) 

y ( 1 1 M ( t ) ~ M o  Fo y l -n  

M~ M i F(2 - - n )  (A4b) 

Where y = a)p,jt; x = w/~Op, j; 2F2( ) and 2F1( ) 
are hypergeometfic functions; F( ) is the gamma 
function; Fo = F(1 -- n + m) /[F(m) .  F(2 --  n)] ; 
and n and m are the correlation indices for two 
specific mechanisms of  relaxation/retardation. Jo 
is the magnitude of  the compliance dispersion 
with infinite frequency value J(r162 and zero 
frequency value J (0)  so that J ( 0 ) = J o  + J ( ~ ) .  
The time dependence of  the compliance has been 
expressed as J(t)  with a defined zero time value 
of zero. Mo is the magnitude of the modulus 
dispersion with infinite frequency value M(~)  
and zero frequency value M(0) so that M ( 0 ) =  
M(~)-- /14o.  The time dependence of  the modulus 
has been expressed as M(t) with an initial time 
value of M~. The parameter a is a positive constant. 
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